SIDDHARTH INSTITUTE OF ENGINEEERING & TECHNOLOGY .: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : DICD (20EC4202)

Course & Branch: M.Tech-VLSI

Year &Sem: I-M.Tech & I-Sem

Regulation: R20

<u>UNIT-I</u> <u>CMOS INVERTER & LOGIC</u>

1	a)	Draw the circuit for NMOS inverter and explain its operation.	[L1] [CO1]	6M
	b)	Compare the characteristics of the different types of MOS inverters in terms	[L2] [CO1]	6M
		of noise margin and power dissipation.		
2	a)	What makes dynamic CMOS circuits faster than static CMOS circuits?	[L1] [CO1]	6M
	b)	Draw the ideal characteristics of a CMOS inverter and compare it with	[L1] [CO1]	6M
		the actual characteristics.		
3		Design a static CMOS circuit to realize the following functions:		
	a)	$\mathbf{F} = \mathbf{b} + (\mathbf{a} \bullet \mathbf{c}) + \mathbf{c}\mathbf{a}.$	[L6] [CO2]	6M
	b)	XNOR gate.	[L6] [CO2]	6M
4	a)	Draw the circuit topology and explain the operation of CMOS domino	[L1] [CO1]	6M
		logic.		
	b)	How clock skew problem is overcomes in domino CMOS circuits?	[L1] [CO1]	6M
5	a)	Implement the 2-input NAND gate with CMOS logic and explain its	[L6] [CO2]	6M
		working.		
	b)	What are the advantages of dynamic logic over static CMOS logic?	[L1] [CO1]	6M
6	a)	With the help of diagrams, explain about static CMOS inverter.	[L2] [CO1]	6M
	b)	Discuss about the performance of dynamic CMOS inverter.	[L6] [CO1]	6M
7	a)	Implement the 2-input NOR gate with static CMOS and dynamic CMOS.	[L6] [CO2]	6M
	b)	How clock skew problem is overcome in NORA CMOS circuits?	[L1] [CO1]	6M
8	a)	Construct a XNOR gate in dynamic logic and explain its working.	[L3] [CO2]	6M
	b)	What are the problems associated with dynamic logic?	[L1] [CO1]	6M
9	a)	How does the domino logic solves the problem in dynamic logic?	[L1] [CO1]	6M
	b)	In which way NORA logic is power efficient? Explain with appropriate	[L2] [CO1]	6M
		equations.		
10	a)	Design 4-to-1 MUX using CMOS transmission gate.	[L6] [CO2]	6M
	b)	Compare the sources of power dissipation between static CMOS and	[L2] [CO1]	6M
		dynamic CMOS.		

UNIT-II CMOS DESIGN

_				
1	a)	Illustrate the method of logical effort for transistor sizing.	[L2] [CO4]	6M
	b)	Explain the read/write operation of the SRAM cell.	[L2] [CO2]	6M
2		Prove that the delay of a series of pass transistors can be reduced from	[L5] [CO3]	12M
		quadratic dependence to linear dependence on the number of transistors in		
		series by inserting buffers at suitable intervals.		
3	a)	Explain about different strategies for building low power CMOS gates.	[L2] [CO2]	6M
	b)	Draw the circuit for 4 transistors SRAM and explain its working.	[L1] [CO2]	6M
4	a)	Why low power has become an important issue in the present day VLSI	[L1] [CO2]	6M
		circuit realization?		
	b)	Explain how read and write operations are performed in a SRAM.	[L2] [CO2]	6M
5	a)	Sketch the schematic diagram of a SRAM memory cell along with sense	[L1] [CO2]	6M
		amplifier and data write circuitry.		
	b)	Discuss about power consumption in CMOS gates.	[L6] [CO2]	6M
6	a)	What is meant by logical effort?	[L1] [CO4]	6M
	b)	Explain the design considerations of a 4-bit SRAM with the help of CMOS	[L2] [CO2]	6M
		logic diagram.		
7	a)	Explain the logical effort of two – input NAND and NOR gates with neat	[L2] [CO4]	6M
		circuit diagram.		
	b)	In what way the DRAMs differ from SRAMs?	[L1] [CO2]	6M
8	a)	Explain about different strategies for building low power CMOS gates.	[L2] [CO2]	6M
	b)	Explain the read and write operations for a one transistor DRAM cell.	[L2] [CO2]	6M
9	a)	Explain with a neat sketch about the operation of the 6 transistor SRAM	[L2] [CO2]	6M
		cell.		
	b)	Explain the design considerations of a 4-bit RAM with the help of CMOS	[L2] [CO2]	6M
		logic diagram.		
10	a)	What is short circuit power dissipation? On what parameters does it	[L1] [CO2]	6M
		depend?		
	b)	Draw one cell dynamic RAM circuit and explain its working.	[L1] [CO2]	6M

<u>UNIT-III</u> BIPOLAR GATE DESIGN

1		What is dynamic behavior of BiCMOS logic? Explain in detail with neat	[L1] [CO3]	12M
		sketches.		
2		Draw the schematic diagram of different Bi-CMOS inverters. Explain its	[L1] [CO3]	12M
		operation.		
3	a)	Compare the switching characteristics of a BiCMOS inverter with respect to	[L2] [CO3]	6M
		that for static CMOS for different fan out conditions.		
	b)	Design NAND gate in BiCMOS logic.	[L6] [CO3]	6M
4	a)	Explain how to calculate the delay for the BiCMOS circuits.	[L2] [CO3]	6M
	b)	Explain the concept of BiCMOS inverter.	[L2] [CO3]	6M
5		Explain in detail how do we calculate power for BiCMOS and on what	[L2] [CO3]	12M
		parameters the power equation depends on?		
6		Draw and explain the static and dynamic characteristics of BICMOS inverter.	[L1] [CO3]	12M
7	a)	Discuss about delay and power consumption in BICMOS logic circuits.	[L6] [CO3]	6M
	b)	List the advantages and disadvantages of Bi-CMOS.	[L4] [CO3]	6M
8		Explain the working principle of Bi-CMOS with the help of static and dynamic	[L2] [CO3]	12M
		characteristics.		
9		Explain about bipolar gate design in detail with neat sketches.	[L2] [CO3]	12M
10		What is static behavior of Bi-CMOS logic? Explain in detail with neat	[L1] [CO3]	12M
		sketches.		

<u>UNIT-IV</u> LAYOUT DESIGN RULES

1	a)	What are the general observations on the design rules?	[L1] [CO4]	6M
	b)	Write about NMOS based design rules.	[L1] [CO4]	6M
2	a)	Discuss about 'Mead Conway Design' rules for silicon gate NMOS process.	[L6] [CO4]	8M
	b)	What is the need for design rules? Explain.	[L1] [CO4]	4M
3		Design a CMOS logic gates for the function $F = \overline{(A+BC)}$. D. Also indicate the	[L6] [CO4]	12M
		connections of signals F, V_{DD} and GND. Draw the stick diagram		
		representation for the circuit designed.		
4	a)	What are the CMOS based design rules?	[L1] [CO4]	6M
	b)	Explain two input NAND gate with relevant Layout example.	[L2] [CO4]	6M
5		Draw the stick diagram for the following schematic using appropriate colors.	[L1] [CO4]	12M
6		Write about:		
	a)	Area capacitance	[L1] [CO4]	6M
	b)	Drive large capacitive load	[L1] [CO4]	6M
7	a)	What is the need of wired capacitance? Where it is used? Explain.	[L1] [CO4]	6M
	b)	What is area capacitance? Explain its significance in the layout design.	[L1] [CO4]	6M
8		Write about:		
	a)	Sheet resistance	[L1] [CO4]	6M
	b)	Lambda based design rules	[L1] [CO4]	6M
9	a)	What is sheet resistance? Find out the expression fo the resistance of	[L1] [CO4]	6M
		rectangular sheet in terms of sheet resistance.		
	b)	Find out the capacitance of a MOS capacitor.	[L1] [CO4]	6M
10	a)	Implement the 2-input XOR gate for CMOS logic and explain its working.	[L6] [CO2]	6M
1	b)	Design Layout Diagram for above diagram with relevant colors.	[L6] [CO4]	6M

<u>UNIT-V</u> <u>SUBSYSTEM DESIGN PROCESS</u>

1a)How to design a 4-bit shifter? Explain with schematic.[L1] [CO5]6Mb)What is pipeline multiplier array? Explain.[L1] [CO5]6M2a)Discuss about design approach of carry look ahead adder with neat sketch.[L6] [CO5]6Mb)Explain Booth's algorithm and its modified algorithm.[L2] [CO5]6M3a)Compare different types of CMOS subsystem shifters.[L5] [CO5]6Mb)Discuss about design approach of 4-bit shifter.[L6] [CO5]6M4a)Draw and explain the booth decode cell used for booth multiplier.[L1] [CO5]6M5a)Analyze the timing of this 4-bit CLA.[L6] [CO5]6Mb)Compare CLA with RCA and state its merits and demerits.[L6] [CO5]6M6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6Mca)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L4] [CO6]6M7a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L4] [CO6]6M7a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M9a)D					
2 a) Discuss about design approach of carry look ahead adder with neat sketch. [L6] [CO5] 6M b) Explain Booth's algorithm and its modified algorithm. [L2] [CO5] 6M 3 a) Compare different types of CMOS subsystem shifters. [L5] [CO5] 6M b) Discuss about design approach of 4-bit shifter. [L6] [CO5] 6M 4 a) Draw and explain the booth decode cell used for booth multiplier. [L1] [CO5] 6M b) Design a 4-bit CLA adder. [L6] [CO5] 6M 5 a) Analyze the timing of this 4-bit CLA. [L4] [CO5] 6M b) Compare CLA with RCA and state its merits and demerits. [L6] [CO5] 6M 6 a) Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and [L1] [CO6] 6M comment on the advantages and disadvantages of the multiplier. [L4] [CO6] 6M b) Design the ALU sub-system? Give the process. [L1] [CO6] 6M b) Design the sub-system Serial Parallel Multiplier. [L4] [CO6] 6M 7 a) Analyze the timing of the array multiplier. [L4] [CO6] 6M b)	1	a)	How to design a 4-bit shifter? Explain with schematic.	[L1] [CO5]	6M
b)Explain Booth's algorithm and its modified algorithm.[L2] [CO5]6M3a)Compare different types of CMOS subsystem shifters.[L5] [CO5]6Mb)Discuss about design approach of 4-bit shifter.[L6] [CO5]6M4a)Draw and explain the booth decode cell used for booth multiplier.[L1] [CO5]6Mb)Design a 4-bit CLA adder.[L6] [CO5]6M5a)Analyze the timing of this 4-bit CLA.[L4] [CO5]6Mb)Compare CLA with RCA and state its merits and demerits.[L6] [CO5]6M6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L4] [CO6]6Mb)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M		b)	What is pipeline multiplier array? Explain.	[L1] [CO5]	6M
3 a) Compare different types of CMOS subsystem shifters. [L5] [CO5] 6M b) Discuss about design approach of 4-bit shifter. [L6] [CO5] 6M 4 a) Draw and explain the booth decode cell used for booth multiplier. [L1] [CO5] 6M b) Design a 4-bit CLA adder. [L6] [CO5] 6M 5 a) Analyze the timing of this 4-bit CLA. [L4] [CO5] 6M b) Compare CLA with RCA and state its merits and demerits. [L6] [CO5] 6M 6 a) Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain. [L1] [CO6] 6M b) Comment on the advantages and disadvantages of the multiplier. [L4] [CO6] 6M 7 a) How to design the ALU sub-system? Give the process. [L1] [CO6] 6M b) Design the sub-system Serial Parallel Multiplier. [L4] [CO6] 6M 8 a) Analyze the timing of the array multiplier. [L4] [CO6] 6M b) Explain the modified booth algorithm. [L2] [CO5] 6M b) Explain the modified booth algorithm. [L2] [CO5] 6M b)	2	a)	Discuss about design approach of carry look ahead adder with neat sketch.	[L6] [CO5]	6M
b)Discuss about design approach of 4-bit shifter.[L6] [CO5]6M4a)Draw and explain the booth decode cell used for booth multiplier.[L1] [CO5]6Mb)Design a 4-bit CLA adder.[L6] [CO5]6M5a)Analyze the timing of this 4-bit CLA.[L4] [CO5]6Mb)Compare CLA with RCA and state its merits and demerits.[L6] [CO5]6M6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6Mb)Comment on the advantages and disadvantages of the multiplier.[L4] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO5]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6M9a)Construct 4-bit SISO and explain its operations.[L2] [CO5]6M9a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M		b)	Explain Booth's algorithm and its modified algorithm.	[L2] [CO5]	6M
4a)Draw and explain the booth decode cell used for booth multiplier.[L1] [CO5]6Mb)Design a 4-bit CLA adder.[L6] [CO5]6M5a)Analyze the timing of this 4-bit CLA.[L4] [CO5]6Mb)Compare CLA with RCA and state its merits and demerits.[L6] [CO5]6M6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6Mb)Comment on the advantages and disadvantages of the multiplier.[L4] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M	3	a)	Compare different types of CMOS subsystem shifters.	[L5] [CO5]	6M
b)Design a 4-bit CLA adder.[L6] [CO5]6M5a)Analyze the timing of this 4-bit CLA.[L4] [CO5]6Mb)Compare CLA with RCA and state its merits and demerits.[L6] [CO5]6M6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6Mb)Comment on the advantages and disadvantages of the multiplier.[L4] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6M9a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M		b)	Discuss about design approach of 4-bit shifter.	[L6] [CO5]	6M
5 a) Analyze the timing of this 4-bit CLA. [L4] [CO5] 6M b) Compare CLA with RCA and state its merits and demerits. [L6] [CO5] 6M 6 a) Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain. [L1] [CO6] 6M b) Comment on the advantages and disadvantages of the multiplier. [L4] [CO6] 6M 7 a) How to design the ALU sub-system? Give the process. [L1] [CO6] 6M b) Design the sub-system Serial Parallel Multiplier. [L6] [CO6] 6M 8 a) Analyze the timing of the array multiplier. [L4] [CO6] 6M b) Explain the modified booth algorithm. [L2] [CO5] 6M 9 a) Construct 4-bit SISO and explain its operations. [L6] [CO5] 6M b) With a neat sketch explain the working of array multiplier. [L6] [CO5] 6M 10 a) Design the circuit diagram of logarithmic shifter using CMOS logic. [L6] [CO5] 6M	4	a)	Draw and explain the booth decode cell used for booth multiplier.	[L1] [CO5]	6M
b)Compare CLA with RCA and state its merits and demerits.[L6] [CO5]6M6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6Mb)Comment on the advantages and disadvantages of the multiplier.[L4] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M		b)	Design a 4-bit CLA adder.	[L6] [CO5]	6M
6a)Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and explain.[L1] [CO6]6Mb)Comment on the advantages and disadvantages of the multiplier.[L4] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M	5	a)	Analyze the timing of this 4-bit CLA.	[L4] [CO5]	6M
explain.Image: construct 4-bit SISO and explain its operations.Image: construct 4-bit SISO and explain its operations.10a)Design the circuit diagram of logarithmic shifter using CMOS logic.Image: construct 4-bit SISO and explain its operations.		b)	Compare CLA with RCA and state its merits and demerits.	[L6] [CO5]	6M
b)Comment on the advantages and disadvantages of the multiplier.[L4] [CO6]6M7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M	6	a)	Draw the circuit diagram of 4-bit Baugh-Wooley multiplier structure and	[L1] [CO6]	6M
7a)How to design the ALU sub-system? Give the process.[L1] [CO6]6Mb)Design the sub-system Serial Parallel Multiplier.[L6] [CO6]6M8a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M			explain.		
b)Design the sub-system Serial Parallel Multiplier.[L6] [C06]6M8a)Analyze the timing of the array multiplier.[L4] [C06]6Mb)Explain the modified booth algorithm.[L2] [C05]6M9a)Construct 4-bit SISO and explain its operations.[L6] [C05]6Mb)With a neat sketch explain the working of array multiplier.[L2] [C05]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [C05]6M		b)	Comment on the advantages and disadvantages of the multiplier.	[L4] [CO6]	6M
8a)Analyze the timing of the array multiplier.[L4] [CO6]6Mb)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M	7	a)	How to design the ALU sub-system? Give the process.	[L1] [CO6]	6M
b)Explain the modified booth algorithm.[L2] [CO5]6M9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M		b)	Design the sub-system Serial Parallel Multiplier.	[L6] [CO6]	6M
9a)Construct 4-bit SISO and explain its operations.[L6] [CO5]6Mb)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M	8	a)	Analyze the timing of the array multiplier.	[L4] [CO6]	6M
b)With a neat sketch explain the working of array multiplier.[L2] [CO5]6M10a)Design the circuit diagram of logarithmic shifter using CMOS logic.[L6] [CO5]6M		b)	Explain the modified booth algorithm.	[L2] [CO5]	6M
10 a) Design the circuit diagram of logarithmic shifter using CMOS logic. [L6] [CO5] 6M	9	a)	Construct 4-bit SISO and explain its operations.	[L6] [CO5]	6M
		b)		[L2] [CO5]	6M
b)Explain what is subsystem design process.[L2] [CO5]6M	10	a)	Design the circuit diagram of logarithmic shifter using CMOS logic.	[L6] [CO5]	6M
		b)	Explain what is subsystem design process.	[L2] [CO5]	6M

Prepared by:

K D Mohana Sundaram, Assistant Professor, Department of ECE.